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Background:

Single cell (sc) RNA and B cell receptor (BCR) sequencing can be used to characterize and
enhance our understanding of intra-tumoral heterogeneity and gene expression profiles versus bulk
approaches. We applied these techniques to lymphoplasmacytic lymphoma (LPL)/Waldenstrdm
macroglobulinemia (WM) patient samples to better understand the cellular make-up and gene
expression profiles of tumor cells.

Methods:

Paired scRNA-seq and scBCR-seq were performed on fresh bone marrow (BM) aspirate samples
from patients with symptomatic (n=26) and smoldering (n=3) WM, as well as a peripheral blood
(PBMC) sample from 1 patient with smoldering LPL. All samples were subjected to CD138+ and
CD19+ selection. cDNA libraries were prepared from these enriched samples, followed by
simultaneous 5’ gene expression (scRNA-seq) and scBCR-seq. Single-cell data was processed as
previously described (Dang et al., Cancer Cell, 2023). The mutation status of MYD88, CXCR4,
TP53, DNMT3A, TET2, and ASXL1 for each patient was determined by clinical molecular
diagnostics (Figure. 1A, 1B).

Results:

We profiled 247,916 high-quality cells including 111,848 B cells (21,382
progenitor/precursor/immature B cells and 90,466 mature B cells) and 136,068 plasma cells (PCs).
We also obtained scBCR-seq data on 223,062 cells, of which 198,403 had paired scRNA-seq data.
Clonotype was defined as monoclonal (frequency=>5), polyclonal (frequency<5), and undetected.
Unsupervised clustering analysis revealed 10 clusters in B cells, including 4 precursor, 2 naive, 3
memory and 1 atypical B cell clusters. Additionally, 3 clusters were identified in PCs (Figure. 1C).

More than half of the naive/germinal center (GC) B, unswitched memory B, IgE memory B, and
PCs were monoclonal, while immature B, naive B, SI00A10+ memory B, and atypical B cells
were polyclonal. Monoclonal cells within a single patient displayed muitiple phenotypes despite
sharing the same clonotype (Figure.1D). MYD88-mutated patients had higher proportions of naive
and unswitched memory B but lower proportions of precursor B, switched memory B, and
CXCR4+ PCs compared to MYD88 wild-type patients. MYD88™CXCR4™" patients (N=10) had



more PCs, but fewer naive/GC B than MYD88™CXCR4™ patients (N=15). Smoldering WM
patients had higher proportions of proliferating pro/pre-B, naive B, and unswitched memory B
than symptomatic WM patients. Patients with prior covalent BTK inhibitor treatment had more
plasmablasts but fewer naive/GC B compared to those without prior treatment (Figure. 2A).

Differential gene expression analysis between moncclonal and polyclonal B cells showed high
expression of JCHAIN, BCL2, XBP1, ZNF8044, CDKNIA, and HSPAS, among others in
monoclonal B cells. Pathway analysis revealed upregulated apoptotic signaling, B cell activation,
response to endoplasmic reticulum stress, and glucose starvation, with downregulated B cell
mediated immunity and actin filament-based processes in monoclonal B cells. Comparing
monoclonal and polyclonal PCs, we observed elevated expression of JCHAIN, IGHM, CD794,
CXCR4, ZNF804A, and a variety of ribosome genes, et al., with downregulated activity in B cell
activation, phagocytosis, humoral immune response and complement activation in monoclonal
PCs (Figure. 2B).

Conclusions:

Noted intra-tumoral heterogeneity and differences in gene expression between monoclonal and
polyclonal cells may help inform new therapeutic sequences for pre-clinical and clinical
investigation.
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Figure 1. Workflow, sample information and single cell transcriptome map of this study. (A)
A schema depicting the workflow of this study. (B) Patient characteristics. (C) Uniform manifold
approximation and projection (UMAP) visualization of unsupervised clustering analysis of B cells
and plasma cells that passed quality filtering. Cells were color coded for their phenotypes (left and
middle) and BCR clonotype proportion (right). (D) Stacked bar plot showing the composition of
each cell population regarding the clonotype groups.
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Figure 2. Correlation of cell phenotypes with genetic and clinical information, and
differences in gene expression between monoclonal and polyclonal cells. (A) Boxplots showing
the comparisons of cell population proportions among monoclonal cells across different groups
and settings. (B) Volcano plots (left) and bubble plots (right) showing differentially expressed
genes and enriched pathways between monoclonal and polyclonal B cells (top) and plasma cells
(bottom).



